首页> 外文OA文献 >A Sparse and High-Order Accurate Line-Based Discontinuous Galerkin Method for Unstructured Meshes
【2h】

A Sparse and High-Order Accurate Line-Based Discontinuous Galerkin Method for Unstructured Meshes

机译:一种稀疏高阶精确的基于线的不连续Galerkin   非结构化网格的方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present a new line-based discontinuous Galerkin (DG) discretization schemefor first- and second-order systems of partial differential equations. Thescheme is based on fully unstructured meshes of quadrilateral or hexahedralelements, and it is closely related to the standard nodal DG scheme as well asseveral of its variants such as the collocation-based DG spectral elementmethod (DGSEM) or the spectral difference (SD) method. However, our motivationis to maximize the sparsity of the Jacobian matrices, since this directlytranslates into higher performance in particular for implicit solvers, whilemaintaining many of the good properties of the DG scheme. To achieve this, ourscheme is based on applying one-dimensional DG solvers along each coordinatedirection in a reference element. This reduces the number of connectivitiesdrastically, since the scheme only connects each node to a line of nodes alongeach direction, as opposed to the standard DG method which connects all nodesinside the element and many nodes in the neighboring ones. The resulting schemeis similar to a collocation scheme, but it uses fully consistent integrationalong each 1-D coordinate direction which results in different properties fornonlinear problems and curved elements. Also, the scheme uses solution pointsalong each element face, which further reduces the number of connections withthe neighboring elements. Second-order terms are handled by an LDG-typeapproach, with an upwind/downwind flux function based on a switch function ateach element face. We demonstrate the accuracy of the method and compare it tothe standard nodal DG method for problems including Poisson's equation, Euler'sequations of gas dynamics, and both the steady-state and the transientcompressible Navier-Stokes equations.
机译:我们为偏微分方程的一阶和二阶系统提出了一种新的基于行的不连续Galerkin(DG)离散化方案。该方案基于四边形或六面体元素的完全非结构化网格,并且与标准节点DG方案及其多种变体(例如基于搭配的DG光谱元素方法(DGSEM)或光谱差(SD)方法)密切相关。但是,我们的动机是使Jacobian矩阵的稀疏性最大化,因为这直接转化为更高的性能,尤其是对于隐式求解器,同时保留了DG方案的许多优良特性。为此,我们的方案基于在参考元素中沿每个坐标方向应用一维DG求解器。由于该方案仅将每个节点沿每个方向连接到节点线,因此与标准DG方法相反,该方法将元素内的所有节点与相邻节点中的许多节点连接在一起,从而大大减少了连接数。所得方案类似于并置方案,但是它在每个1-D坐标方向上使用完全一致的积分,这导致非线性问题和弯曲元素具有不同的属性。而且,该方案使用沿着每个元素面的解决方案点,这进一步减少了与相邻元素的连接数量。二阶项由LDG类型的方法处理,在每个元素面具有基于开关函数的上/下风通量函数。我们证明了该方法的准确性,并将其与标准节点DG方法进行了比较,解决了包括泊松方程,气体动力学的欧拉方程以及稳态和瞬态可压缩Navier-Stokes方程在内的问题。

著录项

  • 作者

    Persson, Per-Olof;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号